PARTITIONING AND GECMETRIC EMBEDDING OF RANGE SPACES
OF FINITE VAPNIK-CHERVONENKIS DIMENSION

Noga Alon

Bepartment

Mathemat foy

i3
Tel Aviv dniverasity, kamat Avivy, TEL AVIV G9%7TR. Jerae) .

David Haussleor

Compuwter Sciesnce bepasriment,

Eeocrvertitvy at valiforapia at Saanta

Cruz, SANTA CRUZ, CA Q§004, UIA,

Fmo Welzl

o Institutes for Infermation Prucessing,
teshaical vnaversaly of Grau, Schiosstutligoesce da, A-R0OV0 ERAZ, Austlrin,

I. Introduction and statement of results.

fange scarch problems are widely
studred in the ares of computational geom-
otrev o and Hhey have applications for exam-
ple in computer graphics nand database
managemen! . In 1this section we will state
onr results and diseuss the algorithmic
ot iviatien [ from range search) Farc Lhe
resulte that are of purely combinatorial
nature. “Befinitions relevant for the
results will he omphasized.) Sketches of
proofs will bn given in the next section.

Hnepghly speaking, we investigate the

auest ians

1% which range scarch problems can
bhe attancked with the partition ap-

proach?

20 Which range scoarch problems allow
a transformation into a halfspace-

range search problem in some finite-
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dimensional Fuclidean space?

£1Y and (2) will be answered affirmatively
for range search problems of Vapoilk-
Chervonenkis dimension 1, while there arc
{abstract!) range search problems of
Vapnik Chervonenkis dimension 2 or higher
which allow no transformation as addressed
in {2) and which do not allow partitions
as required in the partition approach,
{The Vapnik-Chervonenkis dimension of a
range search problem will be defined
below. }
In an abstract setting a range seusrch

problem can be specified by a four-tupte

P = tX,R,0,G), where X is a set, R is a sl
of subsets (called rasges) of X, i.e. W 2
2%, (¢ is a rommultalive semigvoup (s sel
closed under a commutative and associstive
addition operation) and 0 is a mapping o
X » C. The problem is now to find a method
{for designing a data structure for a given
(arbitrary but fixed) finite set 2 of
clements in X which allows us to compula
S{o{x) ! xernA} efficiently for a query
range r ¢ R. {We address here a static
version of the problem, neglecting tonser
tions and deletions in the set A, sce
[F].) A method for designing data struc-
tures for a range search problem (X,R,0,G}
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finite A ¢ X it produces a data structure

for A such that, for all r in R, I{o(x) !
xe¢rnNA} can be computed in time at most
HSLIDE

1n our results we will be mainly con-
cerned with the first two components of a

range search problem.

Definition.
(XDR)I

bers of X are called elements

A range space S is a pair
where X is a set and R € 2%, Mem-

or points of
ranges of S.

finite (countable) if X is finite

5 and members of R are called
S is
{crountable). a
Example {. Consider the range search prob-
{(R” ,Ha* ,x, (Wo,+)), where R¢ is the
of points in Lhe real plane, H:* is the
{Ns,+) is the

integers with

lem set

set of open halfplanes,

semigroup of nonnegative
normal addition and x(x) = 1
R% .

structure for a given finite set A of

for every x ¢

Hence, the problem is to design a data

in the plane such that the number

of A that

Hz* can be determined effi-
This range search problem is

points
of points lie in a gquery half-

plane h* ¢
ciently.

commonly referred to as the halfplane-
range counting problem,

The halfplane-range reporting problem
s specified by (Ha.Hz*,Q,(ZRZ,U)), where

gix; {x} for every x ¢ R¥. Obviously,
here we are interested in the set of

points of a given finiteset A ¢ B2 that
Tie in a query halfplane. o
We make the following computational
assumptions on a range search problem
(X, k,0,G):

(1) for any x ¢ X and r ¢ R, x ¢ r?
be decided
{for any A ¢
AnNr = g7

Lima

can in constant time,
X and r ¢ R, A € r?
can be decided in

(i),

{ii)
ane
constant {which implies
and

addition

(i3 in G can be performed

in constant time.

‘The

tions,

reader migh! argue that thesc assump-—

except for (i}, not realistic

This

are

i many cases. is no problem for our
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but it has to be

kept inm mind if one wants to use the

lower bound arguments,

results for upper bounds.)
Taking into account the above assump-
tions on a range search problem (X,R,o,G),
simply storing a given finite subset A of
X in a linear array gives a trivial data
structure which needs linear time to an-
swer a query. Unless we have some further
information on the semigroup G, this data
if,

there is a range r ¢ R

structure is already optimal, for all
subsets A’ of A,
with A’ = A n r.

ble answers (e¢.g.,

Then the number of possi-
for reporiing) to u
query might be as big as 2'4' which gives
1A}
bound for the time needed to answer a

This naturally leads to the fol-

lowing definitions (see [VC], where thesco

as an information thcoretic lower

query.
definitions can be found, albeit,in a
different context).
Definition. let 8§ =
and let A be a finite
X. Then lIx{A) denotes the set of all sub-

sets of A that canm be obtained by
secting A with a range in R, i.e.

{Anr | reR}. If He(A) = 24,
that A is shattered by R.

(X,R) be a range space

sct of elements of

inter-
He (A) =

ithen we say

The Vapnik-

Chervonenkis dimension of S (or siwmply the

s
f 8) is the largest d such that

Lhere exists a subsel A of X of cardi-
nality d that is shattered by R {(if R is
empty, then the dimension is -1, and i! no

such maximal d exists, we say the dimen-

sion of 8 is infinite. @

The (Vapnik-Chervenenkis)} dimension of
the
dimension of its underlying range space
(X,R).

a range search problem (X,R,0,G) is

Example 2. let % be an alphabel and tet =+

be the set of all words over the alphabel
Z (including the empty word X}. For a word
w ¢ ¥, pref{w) denotes the sel of ull
prefixes of w and, for a language | < X%,
PREF(L) = {pref(w) ! wel}. {(Note tha!
PREF(L) is not the set of all prefixes of
words in L!') Obviously, the pair

(¥, PREF(Z*)) is a range space and we call

it the X*-prefix spacc.



Wi nhserve that the dimension of this
range spiweoe s 1 consider two words w’

’

and w” in X', If w’ dis a prefix of w”,

then (w',w"! cannot be shattered, becausc

there is no word w with w” ¢ pref(w) and

» N st

w prefiw); analogously, if w" is a
prefis of w', If neither of the words w’
and w" is a prefix of the other word, then
theve is no word w with {w! ,w"} N

prof {w: {w',w"}. Hence no subset of 2Z*
of cardinality two (or larger) can be
shattered. Since a subset of cardinality
ane can he shattered, the dimension

is L. uo

A5 we have observed above, sublinear
query Limer cannot be achieved for all
finite sets of a range search problem of
infinite dimension, The aatural follow-up
questien is, whelher sublincar query time
can be achieved if the dimension is
finite. First we guote a result (due to
{81, {VvC¢}) which shows that the informa-
tion Lheoretic lJower bound is at most
Q(d- log n) for a range search problem of

finite dimension d.

Definition. For d;0, and n}0 integers,

di{n) is defined as follows: & (0} = 1 for

all d30, de{n} = 1 for all njy0, and ®a(n;
Pain-) + Payi(n-1) for d,n;l. o

PROPOSITION 1.1. Let (X,R) be a range
space of {finite dimension d. For
every finite subset A of X,

PHw (AYD € ®a (A1), o

[t remains to observe that ®#a{n) ¢
An?) for d fixed (and, hence, Jog (NMr(A)|
is 6fd log LAL)).

Wee will now investigate whether the
partition approach always leads to sub-
Jinear query time if the dimension of a
range secarch problem is finite, First we
describe what we mean by a partition-tree
and how a query is performed in such a
tree.

Let I' be a range search problem and let
A be a finite set of elements of P. A
partition-tree T4 for A is a trce with the
following properties: if A contains exac-

tly one clement x, then Ta is a node that

stores x and J(x). 1€ iA 3 2, the yont
of Ta stores a parbition parts{p;

(AL, Az, .., Ak), k32, of A into noncnpty
sots, and for ecach i, 14i{k, a painler Lo
a node child(p,i) that is a root of a
partition—tree for A along with

sum(p,i) = {a(x) ! xachi}.

In order to compute TI{a{x)} ! x:riiAd
for a range r, we start with a globhal
variable SUM, initially set to zero {tho
neutral element in G), in the root p of
the partition tree Ta, add sumip,i1} 1o SUM
for all parts Ai in parts{p) with A: < r
and continuve in the children child(p,i)
for all) parts Ai which are neither con-
tained in nor disjoint from r. {Nole thnt
actually all the leaves in Ta are re-
dundant for the queries?!)

If we recall our computational assump-
tions, then a query in any partition Lree
of A for a range r coan be performed in
lincar time. The following definilions
will lead to a condition on Ta which en-

sures sublinear query time.

Definition. Let r and A be scls. We say
that r avoids A if either A € r or

Anr = ¢ holds. If r does not avoid A,

then we say that r cuts A. a

Definition. Let § = {¥,HR) be a rango
space, let v and m be integers wilh I{m?v,
and let € be a real number with 0¢r:1l,
(i) A partition (A1 ,Az,...,Ae) of a finite
subset A of X is
(with respect to 8}, if
k
1{i !V 1{igk, r cuts Ai}) ¢ m for all
r in R, and
FULA ) 1Kk, v ocuts AjY) £ 1A
for all r in R.

called (v,m,&)-partition

v,

N

(ii) A partition-tree Ta of A is called
{vym,£)-partition tree of A (with respect
to 8), if parts{(p) is a (v,m,&)~-partition

far all nodes p in Ta. o

The following propositign can be ob-
tained from calculations in [HW].

PROPOSITION 1.2. Let P bhe a range
search problem with underlying range
space S5 and let A be a set of n



elements of S. If Ta is a (v,m, &)~

partition tree of A with respect to §

(1{m<v, 0<e<l), then any query with a
range of § in Ta visits at most
1
e a a Ve
-~=-(mn ~1) ¢ O(n )}, @ = “-———=—--
n-1 l+ilog m
1/¢

nodes in Ta for m»2, and at most

1 + log n nodes in Ta for m = 1. o
1/¢
If we recall our computational assump-
tions, then Proposition 1.2 shows that a
query in a (v,m,£)-partition tree can be
performed in O(v'-n ) time, a as defined
above. '

Examwple 3. Consider the range space S2* =
(R2,Hz2*) (recall Ex. 1).
[W]) that for any set A of n points in the

It is known (see

plane in general position there are lines
21 and 22 (disjoint from A) such that the
partition (A;,Az2,A3,Aq) induced on A by 21
and 22 has the property in/4) ¢ lAil ¢
fn/41 for 1 = 1,2,3,4, Note now that every

halfplane h* either contains or is dis-
joint from onme of the quarters in the

dissection of the plane induced by f1 and
22, Hence, for every h* there is an i,
1{i¢{4, such that h* does not cut Ai. Now
partition Ai in (Ai1,A2,A3,Ad) with [A:i] >
In/4} into two parts Ai - {x} and {x} for
an arbitrary x in Ai. Then we get a
(7,3,3/4)-partition (B1,B2,...,Bx) of A
with respect to S2*; actually such a par-
tition exists for all finite point sets in
the plane (not only for those in general
(Note that the quarter in the
and £2 that is not cut by

a query halfplane h* can be determined in

position).
dissection of 2:

constant time!)
Consequently, for every set A of n
in the plane there is a (7,3,3/4)-

partition tree;

points
it allows to answer a
halfplane-range counting query in O(na)
‘time, o = loga3 = 0.79. From a similar
construction it follows that every finite
set of points in BY allows a (24+1-1,2d-
1,(24-1)/29)-partition with respect to
(RY,Ha*), Ha* the set of open halfspaces
in B? (see [YY]).

Willard [W] was the first to use the

-partition—tree-approach for higher-dimen-

sional nonorthogonal range search. He
actually proved a query time for half-
plane-range counting with a = Jog4d =

"0.77. Meanwhile this bound has been im~

proved to a = 2/3+y for each v > O,

[HW]. o

We have now prepared terminology and

" context for the first result.
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THROREM A.
of dimension 1.
A of elements of S there exists a

(15,7,7/8)-partition of A. (2) There
exists a countable range space S of

(1) Let S be a range space
For every finite set

dimension 2 such that for all v,
and £ (1{m<v, 0<e<l) there is a fi-
nite set A of elements of S which
does not allow a (v,m,g)-partition. o

o,

We turn now to the second problem we
want to consider. Yao and Yao {YY] demon-
strated that a number of range search
problems can be transformed into (embedded

in) a halfspace range search problem of
some finite (Buclidean) dimension d. We
investigate, whether this is always possi-
ble for range search problems of finite
Vapnik-Chervonenkis dimension. To be pre-
cise, we settle some terminology.

Let § = (X,R) and S’ = (X’,R’)
be range spaces. We say S is embeddable in
s,
injective mapping n :

Definition.

if there is an
X - X?

in symbols S a 8’,
and a wmapping

e: R » R’, such that for all r ¢ R,

n*(r) = 0™ (X) n o(r),
where N™ is the extension of 1 to subsets
A of X by n(4) = {n(x) ! xeA}. a
Definition. For d } 1, let Ha* be the set
of positive halfspaces in RY. (A halfspace
h* is one of the two open regions in the

dissection of R4 induced by a hyperplane
h. h* is a positive halfspace if ecither h
is vertical or h* is the open halfspace

above h, i.e. h*¥ intersects the positive
vertical axis in a halfline.)
By S4* we denote the range space

(R4,Ha*). o



Example 4. Consider the range space 81 =
(R,T) with 1 the set of open intervals on
For a ¢ R let n(a) be the
point (a,—a%) in R2, and for the interval
(a,b) let ¢((a,b)) be the positive
halfplane bounded by the line through

points (a,-a2?) and (b,~b2). Then 7 and @
realize an embedding of Sr in Sz2*;

St a4 8S:z*. @

the real line.

in I,

hence

Example 6. Let Z = (0,1},
{wi1,w2,ws,ws,ws,ws} C Z* where w1

w2 = 00,

and let L =
= 0,
wi = 01, wa = 10, ws = 001, and
we = 000. lLet R =TI (L),
{ri | i=1,2,...,7},PgE£$§*31 - g, rz2 =
fo}, rz = (0,00}, ra = {0,00,001), rs =
{10}, res = {0,01}, and r7v = {0,00,000}.
Fig. 1.1 shows that (L,R) < Sz*, (with
e(r;) = hi*, 1 ¢ i £ 7).
More generally,

i.e. R =

that
every X*-prefix space is embeddable in

Sz*., a

it can be shown

Figure 1.1

If (X,R) ¢« (X’,R’) and every finite
A’ ¢ X' has a (v,m,€)-partition with re-
spect to (X’,R’), then,

(v,m,€)-partition exists for every A ¢ X

of course, a

with respect to (X,R). More generally, we
can transform data structures for a range
search problem with underlying range space

(X’,R’) into data structures for a range

tive).

search problem with underlying range spacc
(X,R); (the omnly crucial point is that the
embedding mapping for the ranges is effec-
Since partitioning results for the

range spaces S¢* are known ({YY], [HW]),

we are interested in embeddings of a range

space in S4*. Our result is the following

(all statements are best possible):

THEOREM B. (1) Let S be a countable
range space of dimension 1. Then

S a 83*. (2) Let S be a countable
range space of dimension 1 such that
the empty set is a range of S, Then
S < Sz*. (3) There is a countable
range space S of dimension 2 such

that 8§ « S4* holds for nod 3 1. o

It is interesting to apply

if the

empty word is omitted in every range of a
IZ*-prefix space, then the assumptions of

Example 6.
Theorem B(2) to X*~-prefix spaces:

Theorem B(2) are satisfied and it fol-
lows that a (7,3,3/4)-partition exists for
every finite language over XZ. o

2. Proofs of the theorems.

The reader might have already realized
that the two results we presented are
closely related. So Theorem B(1l) immedi-
ately implies Theorem A(l), since we know
that every finite point set in BR® allows a
(15,7,7/8)-partition., It is also clear
that Theorem A(2) entails Theorem B(3)
(due to the partition results in {YY] and
(HW]) .
Theorems A(2) and B(2).
is omitted.

So we will sketch the proofs for
The proof of B(1l)

Proof of Theorem A(2).

In order to show Theorem A(2) we con-
sider finite projective planes. Recall
that the finite projective plane PG(2,q)
is a set V of g2+q+l elements (called
points) and a fawily L of q2+qg+1l subsets
of V (called lines), such that each 2 ¢ L
has cardinality q+1, each x in V belongs
to exactly qtl lines in L, and for every
pair x and x’ of distinct points in V

'



there is a unique line 2 ¢ L with x,x’ €
2. It is well known (see [H]) that PG(2,q)
exists for every prime power q. Clearly,
PG(2,q) = (V,L) is a range space in our
No set of three points of PG(2,q)
is shattered, while two points can be

sense,

shattered; hence, PG(2,q) has Vapnik-
Chervonenkis dimension 2, The key property
of finite projective planes (for our pur-
poses) is formulated in the following
{az],

proposition (see [Al], and also

[L ,Problem 13.13}1).

PROPOSITITON 2.1. Let (V,L) denote
the range space PG(2,q) and let n =

q2+q+l, i.e. |V|] = |L| = n. For every
A CV, A+ ¢, the inequality
[{2¢L ¢ 2nA=¢}| < n3®/2/|A| holds. g

We use Proposition 2.1 to prove that,
for PG(2,q9) = (V,L),
tion (V1,V2,...Vx) of V with respect to
PG(2,q) satisfies n = q2+g+1 <
(v2/(1-€))=2.

To this end let ¢ = (1-¢&) - n/v. If
¢ { q+l, then n/(q+l) { v/(l-€) which
implies by a short calculation that n <
(v2/(1-£))? (use v)2), and we are done. So
let us assume that c > q+1.

every (v,m, £)-parti-

First we

observe that every t in I avoids a Vi,
1<ick, with |Vi]| } c;
of all parts avoided by % contains less

otherwise the union
than k-c { v.c = (1-€)-n elements and so
the union of all parts cut by 2 contains
more than £ ' n elements; a contradiction to
the fact that we are dealing with a
(v,m,€)-partition.

Let I’ be the union of all {fel !
2NVi=g} over all i with |V;} } c. Then
L’} < v-n3/2/c, by Proposition 2.1,
JL?] < v2.nl/2/(1-¢),
that ¢ > q+1,
with |Vi]
quently, by our first observation, L’ =
Thus n < v2.n1/2/(1-¢) which gives the
claimed bound.

i.e.
Since we assumed
no ¢ in L can avoid a V;

J ¢ by containing it. Conse-

If we let now {qi ! i=1,2,...} be an
infinite set of prime powers, then the

range space 8 that is the disjoint union
of all PG(2,qi), i=1,2,...,

Theorem A(2).

demonstrates

. Proof of Theorem B(2).

" range space S =
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Before we show how to embed a countable
(X,R) of dimension 1 with
# ¢ R, we "force a rigid structure” on §
by adding ranges to R without increasing
the dimension.

LEMMA 2.2. Let § = (X,R) be a range
space of dimension 1 with ¢ ¢ R, let
¢ # T cR, let rr = (Y{r | reT} and
let R’ = R U {rr}. Then HNa(A) =
Mr: (A) for every A ¢ X of cardinmality
two.
Proof. Consider two elements x and y of
S. We distinguish four cases. )
{x,y}: For r ¢ T,

Case 1. {x,¥y) Nnrr =

this implies {x,y} Nnr = {x,y} and so
Me({x,v}) = Mr> ({x,¥}).

Case 2. {x,y} Nrr = ¢: As {x,y} n¢ = ¢
the assertion holds.

Then x ¢ r for
in T with y ¢
ri. For this range r1 we have {x,¥}) N r1 =
{x} and so Ma({x,y}) = Mr’ ({x,y}). .

{v}:

{x}:

all r in T and there is a n

Case 3. {x,y} nrr =

{x,y} nrr = Analogous to

Case 3. o

Definition. Let S = (X,R) be a range
space.
(i) S is intersection-closed if {r !
reT} is in R for all ¢ # T ¢ R.
(ii) 8 is a standard ramnge space, if

S is of dimension 1,

¢ ¢ R,

S is intersection-closed,

for all x ¢ X there is an r ¢ R with

X € r, and

for all x,y ¢ X, x #+ y, there is an
r ¢ Rwith |r n {x,¥y}}| = 1. a
LEMMA 2.3. Let S = (X,R) be a range

Then
there is a standard range space 8’ =
(X,R*) with R ¢ R’.

Proof. Let R" = R U {rr ! @+TcR} U {({x} i

%xeX and there is no rcR with xér}, where

N{r ! reT}. Then (X,R")

intersection closed and, by Lemma 2.2,

(X,R") is still of dimension 1. It remains

to add ranges such that for all x,y in X,

space of dimension 1 with ¢ ¢ R.

rT = is

x ¥ y, there is a range r such that |r n



{x,vy}| = 1 (without violating any of the
other properties of a standard range space
we have obtained already).

For each x in X, let r{x) denote the
NireR” ! (recall that R"
is c¢losed under intersections!) and let
t(x)=r(y)}.
let rg = r(x),

and we set Re

range xer} in R"
[x] denote {yeX !
E = [x],
total order on E,
{yeEiz<ey} | z¢E}. Then it can be shown
that R* = R" U U{(Re !
fies the statement of the lemma.

For every
let <g be a

= {re~

x € X,

E={x], x¢X} satis-
(We omit

here further datails, since they lead to a
case analysis like in the proof of Lem-
ma 2.2, o

Lemmma 2.3 shows that we can restrict
ourselves to countable standard range
spaces, if we are interested in embeddings

of countable range spaces of dimension 1

with the empty set a range. Obviously, if
S = (X,R) is a standard range space, then
(A,1k(A)) is a standard range space for

every subset A of X. We will see now that
finite standard range spaces have a simple
correspondence to directed out-trees,

Definition. The l-inclusion graph Is of a
range space 8 = (X,R) is the directed edge
labeled graph with the set R as node set
and {(r,r’) ! and r’=ru{x}
for some xeX) as edge set. The label of

the edge (r,r’)

’

r,v’eR, rs*r’,
is the unique element x in

r - r. o

LEMMA 2.4. let § =
standard range space.

(X,R) be a finite
Then Is is a
directed out-tree (all but exactly
one node, the root, have exactly one
ingoing edge) where every element in
X occurs exactly once as label.

let r(x) = fN{reR i
x¢r} which is a range in R since S is

It also follows that

then r{x) # r(y) since there is

Proof. For x in X,
intersection-closed.
if x # vy,
a range r in R that contains exactly one

of the elements x and y. We conclude that

IR} » |X}+1 {recall that also ¢ is a range
in R!).
actually that
n+l).

we add r{x) -

By Proposition 1.1, this entails
IRl = [X|+1 (since ®1(n) =

A simple case analysis shows that if
{x} to R (for any x in X)
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X,

then this does not increase the dimension
of the resulting range space. R has
already the maximal cardinality for a

range space of dimension 1, this implies
that r(x) -
(r(x)-{x},r(x)) is an cdge in Is with
label x.

Since

{x} is already in R and

Assume now that there is an y in
vy # x, such that r(x) -
then (x,y} is shattered by {¢,r(x)-
{(x},r(x)-{y},r(x)} ¢ R;
Consequently, Is has exactly [X]

{y} is in R;

a contradiction.
edges,
i.e. exactly one edge less than there are
nodes. It is easily seen that there is a
path from the node in Is that corresponds
to ¢ to every other node in Is; the lemma

follows. o

the embedding
spaces,

Before we proceed now to
of countable standard range we
stil]l need some geometrical notation.

(i) If y and y’' are two

then h(y,y’)
denotes the line through y and y’.

(ii) If h is a non-vertical line in RZ?,
then h* denotes the open halfplane bounded
by h that lies above h and h-
open halfplane bounded by h that lies
below h.

(iii) If s is a region in RZ, i

Definition.
distinct points in R2,

denotes the

n

RZ,
then int(s) denotes the interior of s and

e, 8

cl(s) denotes the closure of s. a
Let y, ¥’,
distinct points in R?2, no two on a common
If v e h(y’,y")*, v’ ¢

h{y,y")" and y" ¢ h(y,y')-, then the con-

Definition. and y" be three

vertical line.

triangle. y is called the top cormner of t.
The corridor of t, corr(t), is the closure
of

(h(y,y’)- U h{y,y")-) -
(h{y,y")" n b{y,¥y")" 2 hi(y',¥y")"). a

Fig 2.1 depicts a normal triangle t
with top cornmer y and its corridor c.



p——

Figure 2.1.

Let now S = (X,R) be an arbitrary but
fixed countable range space and let
{%1,%2,....} be an enumeration of the

elements in X. For x: in X, let ri =

N{reRr !

range space, Ti

xi€ér}. Since 8 is a standard

is in R for every positive
integer 1i.

To obtain our embedding of S in Sz*, we
will associate with every x; two normal
triangles t; and €; with their corridors
¢; = corr(t;) and & = corr(f;) such that

the following holds:

(1) €; ¢ int(c;) for

all positive integers j.

¢ int(t;) and &

(2) if x3 € ri, then ti & int(t;) =and
ci € int{®;) for all positive
integers 1 and j, i # j.

¢ r; then t;

lies below cj.

and x;
and ti

(3) if x;
lies below c:

4 ri

Figs. 2.2 and 2.3 illustrate the situa-
tions (2) and (3),

respectively.

Figure 2.2.
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Before we demonstrate how we can find
we show that they
imply already the required embedding. To

<be triangles t; and t;,
this end let y; be the top corner of t;
and let h; be a line through the top
corner of t; such that h;* n t; = ¢ and
such that hy € 2;. Then it follows from
the conditions (1) through (3) above that
y; € hi* if and only if x; € ri. Hence,
the yi’s and h;*’s constitute already an
In

order to show that we find positive half-

embeddding of X for all ranges ri in R.
planes hr* for every r in R such that {j
viehe*) = {j !
r in R and let t =
Nz
show that there is a line hr ¢
t N he* = 8. Let xi
(and so ri € r). Then yi lies above & ;

this shows that yi ¢ hr*t. If

distin-

xjer}, consider an abitrary
nit:
It is not too difficult to
c such that
be an element in v

Xi€r} and c =

Xi€r}.

since ¢ € ©;,
xi is not an element in r, then we
guish two cases:

Then t: ¢

lies in

Case 1. x; € ri for all x; in r:

int(t;) for all x; in r and so yi

t; consequently, yi ¢ hr*.
Case 2. xj ¢ ri for a xj in r: Since xi ¢
r, we have also xi ¢ r;. Thus, t; lies
below c; and so it lies below hr; conse-
quently, again v; ¢ hr*.

We conclude, that if we find triangles

- satisfying the conditions (1) through (3)

then we have established an embedding of S
in 82*. For this last step in the proof we
use the correspondence to directed out-
trees as stated in Lemms 2.4; however, il
will be necessary to deal with ordered
out-trees and we need the following de-
finition.
Definition. Let T be an ordered directed

gut-tree, let e = (p,q) be an edge in T,



ypPx) and (q1,92,...,9u) be
the sequences of children of p and q,

Then the
tree T-e¢ is obtained from T by contracting

let (p1,pz,...

respectively, and let q = pi.

the edge e, i.e. we identify q and p and

assign to p the sequence

(PLsP2y o e dPi=1,91,92 4 0s0m Pi+1y0.04,Pk)
“of children. o
For every non-negative integer j, let

A; = {x:¢X ! i{j} (thus Ao = ¢) and let T,
be an ordered directed labeled out-tree
such that (i) for all non-negative

Js
isomorphic to the l-inclusion
(A; ,MIR(A;)), and (ii) for all
integers j, Tj-1
is the edge in T;
By Lemma 2.4,
It is not hard to achieve (ii),

integers the underlying unordered tree
of T,

graph of

is
positive is isomorphic to
that is

(i) can be

where ej;
labeled by x;.
obtained.

Ti—es,

so we omit here the details.

First let to and fo be two normal
triangles with fo ¢ int(to) and corr(fo) ¢
int(corr(to)). While constructing now t;
and 1 1,2,,...
following additional condition. Let p be a

"node in Tj, let i be the index of the
label g if p
is the root of T;) and let ii1,iz,...,ix be
the indices of the labels of the edges
outgoing from p (in this order). Then the

for §j = we observe the

of its ingoing edge (or i =

triangles til,tieg.--,tik form a "convex
Note

that the only additional condition we

sequence” inside €i in this order.
impose here is that also the ordering has
to be observed. (See Fig. 2.4 for an il-

lustration.)

Figure 2.4.
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Suppuse now we have already defined all
triangles t:i for i{j-1. Let {(p,q) be the
edge in T; with label x;, and let i be the
index of the incoming edge of p (or i = 0
if p bas no incoming edge). We distinguish
two cases: i
g has at least one child in Tj: t;
such that it
for which xx is a label
(and the

same relations must hold for the cor-

Case 1.
has to be chosen inside ?:
contains all tk,
of an outgoing edge of g in T
responding corridors). Since space is
limited,

here;

we cannot go into further details
we only mention that the essential
point is that all the triangles that must
lie inside t; form a (closed) convex sub-
sequence inside ti due to our order ceondi-
tion.

q has no child in T;: t; has to be
in such a way that the
order condition is satisfied and, more-

Case 2.
chosen inside 2i
lie below

over, all triangles inside 1

the corridor c¢5 of t; and t; lies below
the corridors of all the triangles inside
.

Finally, the triangle €; can be ob-
tained by a small (appropriate) perturba-
tion of tj;.

This eventually concludes the proof of

Theorem B(2).

Concerning the proof of Theorem R(1),
we mention here only that it is based on
B(2) by the following transformation: For
sets A and B, let A A B denote the

symmetric difference (A-B) U (B—-A) of A

and B. For a range space § = (X,R) and A ¢
X, let S AA = (X,RAA), where R A A = {rAA :
reR}. It can be shown that the Vapnik-

Chervonenkis diwension of 8 A A equals the
Vapnik-Cervonenkis dimension of §, and

that if S A A is embeddable in Sa* then S
is embeddable in Sa+1*.
observe that if A is a range in §, then ¢

Now it remains to

is a range in S A A.

3. Open problems.

We conclude the paper with two problems
which arise in connection with the results
we presented.



(1) Is it possible to extend the
positive embedding results beyond
"ecountable"?

(2) 1Is it possible, that -- despite
of our negative partition result for
finite projective planes -- there are
partition—trees for finite projective
planes (or for range spaces of dimen-
sion 2 in general) where every range
query visits only a sublinear number
of nodes (and the number of children
in the trees is bounded)? Note that

this does not follow from our result!
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