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finite A cr X it produces a data structure 

for A such thet., for all r in R, I:(fl(Jo ! 
xcrnA) can be computed in time at most 

*!lAll. 

In our results we will be mainly con- 

crerncd with the First two components of a 

I-nngc sr:src:h problem. 

Definition. A range space S is a pair 

(X,Rj, where X is a set and R E 2X. Mem- 

tr i: r $. of’ X are called :J.ements or Doifits of 

S and members of H are called ranges of 3. 

S is fSinjts. (countable) if X is finite . _----.--_-- 
(rountnble). u 

Example 1. Consider the range search prob- 

lem (.W,Hz*,x,(No,+):, whrre 1112 is the set 

of’ points i.n Lhe real. plane, H:<* is the 

not of open halfplanes, (NO,+) is the 

semigroup of nonnegative integers with 

ntr ,-mu I adcli tion and X(x) = 1 for every x E 
I(;’ , Hence, the problem is to design k data 

s1.rticl’ure for a given finite set A of 

p 0 i n t .7 in the plane such that the number 

of pciinis of A that. Jie in a yuory hal-f- 

plane h* 5' Ha* can be determi.ned cffi- 
cient Ly. ‘Phi.s range search problem is 

c,ommonly referred to (1s the halfplane- 

r:lnge counting problem. 

‘Phc halfplane-range reporting problem 

3.s npccified by (R” ,Hz* ,Q, (2RZ,~)), where 
&,(>i,i .: (x) for every x B Rz:. Obviously, 

herrA we are intcrest,ed in the set of 

po-ints of a given finiteset A C R2 that. 

lit in 5% query halfplanc. o 

WC make the ,Pol lowing romput.ntion;ll 

assumptions on a range senrrh prohlem 

Ix,rt,o,Gj: 

(i) for any x c X and r c H, x c r? 

c:an bp docidod in constant time, 

(j ij for any A C X and r C Ii, A C. r? 

ant! A n r 1: $7 can be decided in 

const.ant. !.ime (which implies (i)), 

and 

( iii 1 addition in G can be performed 

in cnnst,nnt- t imc. 

l’l’he rc!;ldc!r m’l.gh I ergur! that these assumy- 

t .i 0 11 6 ( r+xcopt. for (i) , are not real istic 

i II lnally c’awos. This is no problem for our 

lower bound arguments, but it has to bc 

kep,t in mind i,f one wants to use thr 

results for upper bounds.) 

Taking into account the abovr? nssumy- 

tions on a range search problem (X,H,c!,G), 

simpJy storing a given finite subsut A of’ 

X in a linear array gives a trivial datn 

structure which needs linear t.i.mc to an..’ 

riwer a query. Unless we have some further 

information on the semigroup 6, t,his dat.:i 

structure is already optimal, if, for all. 

subsets A’ of A, there is a range Y’ 5 Ii 

with A’ = A n r. Then the number of possi- 

ble answers (c. g. , for reporting) t.0 ;I 

gursry might be as b,i.g as 2:” : which gives 

IAi as an information theorc:t.ic. J.ower 

bound for the time needed to nnswC?r a 

query. l’h:i.s naturally leads to t.hc f’oI.- 

lowi.ng defi.nitions (see [VC], whc:rr i:hesr-: 

definitions can bc founrl, alhC.1, in u 

di f Pcrrnnt c:ont,c?xt) . 

Definition. Let S :: ( X , it ) be a r n n gc s pace 

and lel A bc a .fi.ni te set. of’ f!lrrnrents 01’ 

X. Then RR(A) denotes the set of 811 sub.- 

sets of A that can bc obtained by intr+r- 
setting A with a range in I?, i . c. llti !A) z 

{Anr : I-F.R). If’ IlFI (A) = ZA, 1,hon WC! :;:iy 

that A is shattered hy R. The v-qnjk-- 

Chcarvonenkis dimension of’ r (or simply l.hc .L--‘----.-.---- ______.___^ ___ 0 

dimension of S) is the largest d such that _--,-.--_- --- 

lhere exists a sub set A of X of’ CII rcl i 

nality d that is shattered by R (if’ R is 

empty, thon t.hc! dimension is -1, and i 1’ no 

such maximal d exists, we say the di.mc?n,. 

sion of S’i.s infinj Ir:. 0 

The (Vapni k-Chervoncnki s) ~Ji~merr:aion OF 

3 range se:rrc:h problem (x,K,o,~j is j.h~ 

dimension of its underlying range spncc 

(X,H). 

Example 2. Let. Y be an ~lphabrl. anti 1~::. P’ 

he the set. of all words over the: nlph;rlai~l. 

P (including the empty word X). For a word 

w c: x*, pref(w) denotne the set. c.9 ii I I 

prefixes of w and, for a J.angunge 1, c: 2;” , 

PRRP(L) = {pref(w) I wel.). (No1.a th;c: 

PRGF(L) is not the sot CJf nl 1 prcl‘j.xcs t,,f 

words in L!) Obvious I y, t.he pt3.i r 

(X* ,PREF(Z* )) is a range spocr! ;311d we: co3 I 

i,t t hc 2’* --nr~-fj~y spa!.?.. 
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4s wr* havr! obsr!rvr!d above, sub I i near 

q~tvry I, imct rnnnnt be achieved for all 

f’ini trs :;rsts r8.f’ a range scclrch problr:m of 

in!‘in~!~ dimension. Tho natur;tl fo t.l.ow-up 

qcll‘:t t. i Iin is, whc.1 har sub1 inr!>tr query t imr. 

CHII br: achieve-d if the dimension is 

r.ini I(!. F’i r!;t. we qllotc a I-csuJ t. (due to 

[Sl, fVCj) which shows that the informa- 

t:ioll thr:orcrt.ir: l,ow?r bound ia at most 

12(d~ Ing’ II) for a range search problem of 

fin i t e dimension d. 

Definition. Par d>O, and n)O integers, 

$4 ( n ) i s defined as follows: @d(O) = 1 For 

all d>tl, ‘f%~ll) = 1 for 01.1 n>O, and %(nj 

- a,; : I,-- J ) -i &Q.-J (n-,1) for d,n)l. o 

PROPOSITlON 1.1.. Let. (X,R) he a range 

spacr of f’init.e dimension d. For 

<‘very f ini t,r subset A of x, 

IlIts!A)I < @a(lA~). o 

tt rsmoi.ns to observe that @d(n) c 

O!n”) I‘or d fixed (and, hence:, log’ [RR(A) 1 

is Ojd, lrrg [A()). 

WC hiI I now investigate whether the 

gn1.t i t ion approach always leads to sub- 

lincr~r query time if tbc di.mension of n 

rnnga search problem is fini.te. First we 

rl(~s~.~rib(! what. WR mean by a parl:i tion-tree 

nntl how a query is performed in such n 

trcr!. 

Let I’ ba a range search prob.tem and let 

A ho a finite set of elements of P. A 

partit.ion- tree Tn for A is a trae with the 

fol lowing properties: if A contains exac.- 

t 1 y 0°C C!J cment x, then Tn is a nodo that 

In order to compute! E{c?(x) I s; I-I:A~ 

for a rnngc r, we start with a global 

variable SUM, init.inl.ly set 1.0 zc!ro ; I b(~ 

neutral element in C), in the root p of 

the partjti.on tree TA, add cnm(p, i) !.o ‘:I!?! 

for all parts Ai in parts(p) with Ai c: :- 

and continue in the children chj Itl(51, i) 

for all parts Ai whi.ch are nei.ther c’on- 

tained in nor dis.joint f’rom r. (Vo1.c .I:h:lt. 

nctually oil the lnnvcs i.n TA nrr: rc- 

dundant for thr! qursri (:I; ! ) 

If we recall our computational ;~.-iaurn[~- 

t-i 01)s , then a query in amy part i I ion- Lrrar* 

of A for a range r can be performrttl i.n 

1 inear time. The following dofinitionc 

will Lead to a condition on TA which on- 

sures sublinear query t.imc. 

Definition. Let r and A be sets. WC soy 
that r gx.oj& A if either A ‘: r or 

A II I- =. 0 ho1 ds. If’ r does not avoid A, 

then we say that r :;&&.s. A. o 

Definition. I,cl S : (X,K) hc* rl i-art&r! 

space, let v and m ho int.r~gctrs w.i.Lh J(m~v, 

and let E be a rca1 number with 0’~;. I I 

(i) A partition (Al,A> ,..., Ar) of’ a f’inilf. 

subset A of X is cal led (v ,tn, t:)-pfr.!! i.t.i ori 

(with cr;uctM t..n. S>, i. f --- 

k 6 v, 
Iii : l.(i<k 

r in R, 

I U{Ai i l<i 

for nil 

(ii) A partition- 

r c:ot.s Ai } 1 ( m for a’l’l 

and ’ 

0, r CutS Ai 1 I ( E. !Ai 

r in R. 

tree TA 0.f A is cal Icd 

(v,m,&)--partition tree of A (with respect. 

to S), if parts(p) is a (v,m, E)-port ition 

for al 1. nodes p in TA . P 

The fol.lowing proposition can be ob-, 

taincd from calculations in [HW]. 

PROPOSITION 1.2. Let P he a rongc 

search problem with underlying r:tnc~r~ 

space S and let A be .a set of n 

333 



elements of S. If TA is a (v,n,&)- 

partition tree of A with respect to S 

(l<ol<v, O<&(l), then any query with a 

range of S in TA visits at most 

l+& JO&? 
l/P ---. 

m-l 
(mnU-1) B O(na) , a= ----e-e-- 

1+1og 
l/Em 

nodes in TA for m)2, and at.most 

1 + log 
l/E 

n nodes in Ta for m = 1. LI 

I 
If we recall our computational assump- 

tions, then Proposition 1.2 shows that a 

query in a (v,r,E)-partition tree can be 

performed in O(v.n') time, a as defined 
above. 

Example 3. Consider the range space S2* = 

(IP2,H2*) (recall Bx. 1). It is known (see 

[W]) that for any set A of n points in the 

plane in general position there are lines 

Ql and L2 (disjoint from A) such that the 

partition (Al,Az,As,Aa) induced on A by Ql 

and L2 has the property ln/4J ( IA; I ( 

fn/41 for i = 1,2,3.4. Note now that every 

halfplane h* either contains or is dis- 
joint from one of the quarters in the 

dissection of the plane induced by Ql and 

Q2 . Hence, for every h* there is an i, 

l<i<4, such that h* does not cut Ai. Now 

partition Ai in (AlIA2,Aa,A4) with IAil ) 

[n/4] into two parts Ai - {x] and (x] for 

an arbitrary x in Ai. Then we get a 

(7.3,3/4)-partition (Hi,D5,...,Br) of A 

with respect to Sz*; actually such a par- 
tition exist5 for all finite point sets in 

the plane (not only for those in general 

position). (Note that the quarter in the 

dissection of Ql and a2 that is not cut by 

a query halfplane h* can be determined in 

constant time!) 

Consequently, for every set A of n 

points in the plane there is a (7,3,3/4)- 

partition tree; it allows to answer a 

halfplane-range counting query in O(na) 

time, a = log43 z 0.79. From a similar 

construction it follows that every finite 

set of point5 in Bd allows a (24+1-1,2d- 

1,(2d-1)/2*)zpartition with respect to 

(fl*,Hd*), Hd* the set of open halfspaces 

in Rd (see [YY]). 

Willard [W] was the first to use the 

partition-tree approach for higher-dimen- 

sional nonorthogonal range search. He 

actually proved a query time for half- 

plane-range counting with a = Jogs4 2 

0.77. Meanwhile this bound has been im- 

proved to a = 2/3ty for each 7 > 0, 

[HWI. 0 

We have now prepared terminology and 

context for the first result. 

THEOREM A. (1) Let S be a range space 

of dimension 1. For every finite set 

A of elements of S there exists a 

(15,7,7/S)-partition of A. (2) There 

exists a countable range space S of 

dimension 2 such that for all v, m, 

and E (l<n<v, Ote<l) there is a fi- 

nite set A of elements of S which 

does not allow a (v,m,Q)-partition. a 

We turn now to the second problem we 

want to consider. Yao and Yao [YY] demon- 

strated that a number of-range search 

problems can be transformed into (embedded 

in) a halfspace range search problem of 
same finite (Euclidean) dimension d. We 

investigate, whether this is always possi- 

ble for range search problens of finite 

Vapnik-Chervonenkis dimension. To be pre- 
cise, we settle some terminology. 

Definition. Let S = (X,R) and S' = (X',R') 

be range spaces. We say S is emheddable &I 

S's in symbols S a S', if there is an 

injective mapping n : X + X' and a mapping 

0: R -t R', such that for all r E R, 

VA(r) = W(X) n a(r), 
where n" is the extension of 7) to subsets 

A of X by W-(A) = {n(x) : xeA}. o 

Definition. For d ) 1, let Hd* be the set 

of positive halfspaces in Ifa. (A halfspace 

h* is one of the two open regions in the 

dissection of Rd induced by a hyperplane 

h. h* is a positive halfspace if either h 

is vertical or h* is the open halfspace 

above h, i.e. h* intersects the positive 

vertical axis in a halfline.) 

Ry sd+ we denote the range space 

(Rd,Hd+). o 

334 



Example 4. Consider the range space Sr = 
(tl, 1 ) with 1 the set of open intervals on 

the real line. For a E R let n(a) be the 
point (a,--as) in Ra, and for the interval 
(a,h) in 1, let .~((a,h)) be the positive 

halfplane bounded by the line through 

points (a,-a2) and (b,-ba). Then n and p 

realize an embedding of Sr in Sa+; hence 

Sf 4 s2+. cl 

search problem with underlying range space: 

(X,R); (the only crucial point is that the 

embedding mapping for the ranges is effcc- 

tive). Since partitioning results for the 

range spaces Sa+ are known ([YY], [HW]), 

we are interested in embeddings of a rangc 

space in Sd+. Our result is the following 

(all statements are best possible): 

Example 5. Let Z = (O,l}, and let L = 

(Wl,W2,W9,W4,W5,W6} c z* where WI z- 0, 

w2 = 00, w3 = 01, w4 = 10, w5 = 001, and 
we = 000. Let A = 11 

{l-i i i=l,Z,..., 
rREF(ze)(L), i.e. R = 

7}, where rl - 0, r2 = 
CO), f-3 = {O,OO), r4 = (O,OO,OOl), r-5 -_ 

{lOI* rG = {O,Ol}, and r7 = (O,OO,OOO). 

Fig. 1.1 shows that (L,R) q Sz+, (with 

B(ri) = hi+, 1 ( i < 7). 

More generally, it can be shown that 
every x*-prefix space is embeddable in 
S2' * 0 

Figure 1.1 

THEOREM B. (1) Let S be a countable 

range space of dimension 1. Then 

s d s3+. (2) Let S be a countable 

range space of dimension 1 such that 

the empty set is a range of S. Then 

s Q s2*. (3) There is 3 countable 

range space S of dimension 2 such 

that 6 Q sd+ holds for no d ) 1. o 

Example 6. It is interesting to apply 

Theorem B(2) to x*-prefix spaces: if the 

empty word is omitted in every range of a 

X*-prefix space, then the assumptions of 

Theorem B(2) are satisfied and it fol- 

lows that a (7,3,3/4)-partition exists for 

every finite language over 2. o 

2.. Proofs of the theorems. 

The reader might have already realized 

that the two results we presented are 

closely related. So Theorem B(1) immedi- 

ately implies Theorem A(l), since we know 

that every finite point set in R3 allows a 

(15,7,7/6)-partition. It is also clear 

that Theorem A(2) entails Theorem R(3) 

(due to the partition results in [YY] and 

(HW]). So we will sketch the proofs for ' 

Theorems A(2) and R(2). The proof of R(1) 

is omitted. 

Proof of Theorem A(2)-. 

In order to show Theorem A(2) we con- 
If (X,R) q (X',R') and every finite sider finite projective planes. Recall 

A' c X' has a (v,m,E)-partition with re- that the finite projective plane PG(2,q) 
spect to (X',R'), then, of course, a is a set V of q2+q+l elements (called 
(v,m.E)-partition exists for every A I X points) and a family L of qs+q+l subsets 
with respect to (X,R). More generally, we of V (called lines), such that each P t: L 
can transform data structures for a range has cardinality q+l. each x in V belongs 
search problem with underlying range space to exactly q+l lines in L, and for every 
(X',R') into data structures for a range pair x and x' of distinct points in V 
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there is a unique line a 6 L with x,x' e 

a. It is well known (see [A]) that PG(2,q) 

exists for every prime power q. Clearly, 

PG(2.q) = (V,L) is a range space in our 

sense. Ro set of three points of PG(2,q) 

is shattered, while two points can be 

shattered; hence, PG(2,q) has Vapnik- 
Chcrvonenkis dimension 2. The key property 

of finite projective planes (for our pur- 

poses) is formulated in the following 

proposition (see [Al], [A2], and also 

[L ,Problem 13.131). 

PROPOSITITON 2.1. Let (V,L) denote 

the range space PG(2,q) and let n = 

qc+q+l, i.e. IV1 = IL] = n. For every 

A c V, A * 0, the inequality 

l{asL : QnA=$S}l < n312/]A] holds. q 

We use Proposition 2.1 to prove that, 

for PG(2,q) q (V,L), every (v,m,E)-parti- 
t.i.on (Vl ,Va,. . . Vk) of V with respect to 
PG(2,q) satisfies n -- q2+q+l < 

(vZ/(l-&))2. 

To this end let c = (1-s).n/v. If 

= < 9+1, then n/(q+l) < v/(1-&) which 
implies by a short calculation that n < 

(+/(I-~))s (use v)2), and we are done. So 

let us assume that c > q+l. First we 

observe that every 1 in L avoids a Vi, 

l<i<k, with ]ViI ) c; otherwise the union 
of all parts avoided by P contains less 

than k.c ( v*c = (1-~).n elements and so 

the union of all parts cut by L contains 

more than E.n elements; a contradiction to 

the fact that we are dealing with a 

(v,m,E)-partition. 

Let I,' be the union of all (EsL : 
enVi=@) over all i with ]Vi ] ) c. Then 

II,'] < v.ns/s/c. by Proposition 2.1, i.e. 
IL'1 < vs. nr/2/(1-&). Since we assumed 
that c > q+l, no L in L can avoid a Vi 

with IVi I > c by containing it. Conse- 

quentl.y, by our first observation, I' = L. 

Thus n < vs.nl's/(l-s) which gives the 

claimed bound. 

If we let now {qi : i=1,2,...} be an 

infinite set of prime powers, then the 

range space S that is the disjoint union 

of all PG(2,qi), i=l,Z ,a.., demonstrates 
Theorem A(2). 

Proof of Theorem B(Z)-. 

Before we show how to embed 3 countable 

range space S = (X,R) of dimension 1 with 

0 B R, we "force a rigid structure" on S 

by adding ranges to R without increasing 

the dimension. 

LEMMA 2.2. Let S = (X,R) be a range 

space of dimension 1 with 0 6 R, let 

0 + T E R, let r-7 = n(r : r-CT} and 

let R' = R u (rt). Then RR(A) = 

RR'(A) for every A G X of cardinality 

two. 

Proof -* Consider two elements x. and y of 

S. We distinguish four cases. 

Case 1. (x,y] n rT = {x,y): For r c T, 

this implies (x,y} n r = (x,y} and so 

h((X,Yl) = Ih'({X,Yl). 
Case 2. {x,y) r-l rT = 0: As (x,y) n 0 - 0 

the assertion holds. 

Case 3. (x,y} n r-7 = (x}: Then x 6 r for 

all r in T and there is 3 ri in T with y U 

. 

;:I 

For this range r-1 we have (x,y) n r-1 = 

and so nR({x,y)) = htn({x,y)). 

C-WC 4. (x,Y) n rT = {y}: Analogous to 

Case 3. o 

Definition. Let S = (X,R) be a range 

space. 

(i) S is intersection-closed if n{r : 

reT) is in R for all 0 f T c R. 

(ii) S is a standard range space, i. f 

S is of dimension 1, 

a' E R, 

S is intersection-closed, 

for all x 6 X there is an r E R with 

x E r, and 

for all x,y 6 X, x + y, there is an 

r E R with Ir (7 (x,y}l = 1. o 

LEMMA 2.3. Let S = (X,R) be a range 

space of dimension 1 with 0 B R. Then 

there is a standard range space S' = 

(X,R') with R F. R'. 

Proof. Let R" = R U (L-T : 0STGR) U ((x} : 

XEX and there is no rcR with xer), where 

rT q n(r I r-ET). Then (X,R") is 

intersection closed and, by Lemma 2.2, 

(X,R") is still of dimension 1. It remains 

to add ranges such that for all x,y in X, 

x 0 y, there is a range r such that Ir n 
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(s,y)l 3 1 (without violating any of the 

other properties of a standard range space 
we have ohtained already). 

For each x in X, let r(x) denote the 

range n(rcR” ! xcr} in R” (recall that R” 

is closed under intersections!) and let 

[x] denote (y6X ! r(x)=r(y)}. For every 

E = [xl, x E X, let rE = r(x), let <E be a 

total order on E, and we set Rr = {rr- 

(ysB:z<ey} : ZSE). Then it can be shown 

that R’ = R” u ~(RE : E=[x], xeX} satis- 

fies the statement of the lemma. (We omit 

here further datails, since they lead to a 

case analysis like in the proof of Lem- 

ma 2 2 . . 0 

Lemmma 2.3 shows that we can restrict 

ourselves to countable standard range 

SPZICC?S, if we are interested in embeddings 

of countable range spaces of dimension 1 

with tho empty set a range. Obviously, if 

S = (X.R) is a standard range space, then 

(A,Ilw(A)) is a standard range space for 

every subset A of X. We will see now that 

finite standard range spaces have a simple 

correspondence to directed out-trees. 

Definition. The l-inclusion graph Is of a 

range space S q (X,R) is the directed edge 

labeled graph with the set R as node set 

and {(r,r’) : r,r’ER, r*r’, and r’zrU(x) 

fur some XEX) ai edge set. The label of 

the edge (r,r’) is the unique element x in 

r’ - r. 0 

LEMMA 2.4. Let S = (X,R) be a finite 

standard range space. Then Is is a 
directed out-tree (all but exactly 

one node, the root, have exactly one 

ingoing edge) where every element in 

X occurs exactly once as label. 

Proof -a For x in X, let r(x) = n{rsa : 

xcr} which is a range in R since S is 

intersection-closed, It also follows that 
if x t y, then r(x) 4 r(y) since there is 

a range r in R that contains exactly one 

of the elements x and y. We conclude that 

IR] ) 1X1+1 (recall that also 0 is a range 
in R!). Ry Proposition 1.1, this entails 

actually that IRi = 1X(+1 (since 41(n) = 

n+l). A simple case analysis shows that i.f 

we add r(x) - (x} to R (for any x in X) 

then this does not increase the dimensi<;n 

of the resulting rangr: space. Since H has 

already the maximal cardinality for n 

rqnge space of dimension 1, this implies 

that r(x) - (x} is already in R and 

(r(x)-(x),r(x>) is an edge in Ts with 

label x. Assume now that there is an y in 

x, Y * Xl such that r(x) - (y) is in R; 

then (x,y) is shattered by {ti,r(x)-. 

{x),r(x)-{y},r(x)} G R; a contradiction. 

Consequently, Is has exactly 1x1 edges, 

i.e. exactly one edge less than there arc! 

nodes. It is easily seen that there is a 

path from the node in Is that corresponds 

to 0 to every other node in Is; the lemma 

follows. o 

Before we proceed now to the embedding 

of countable standard range spaces, we 

still need some geometrical notation. 

Definition. (i) If y and y’ are two 

distinct points in R”, then h(y,y’) 

denotes the line through y and y’. 

(ii) If h is a non-vertical line in R”, 

then h+ denotes the open halfplane bounded 
by h that lies above h and h- denotes the 

open halfplane bounded by h that lies 

below h. 

(iii) If s is a region in 82, i.e. s C R2, 

then int(s) denotes the interior of s and 

cl(s) denotes the closure of s. o 

Definition. Let y, y’, and y” be three 

distinct points in R”, no two on a common 

vertical line. If y E h(y’,y”)+, y’ E 

h(y,y”)- and y” e h(y,y’)-, then the con- 

vex hull t of (y,y’,y”} is termed a _normal_ 

triangle. y is called the w corner of t. 

The corridor of t, corr(t), is the closure 

of 

(h(y,y’)- u h(y,y”)-) - 

(h(y,y’)- n h(y,y”)- n h(y’,y”)-). o 

Fig 2.1 depicts a normal triangle t 

with top corner y and its corridor c. 
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Figure 2.1. 

Let now S = (X,R) be an arbitrary but 

fixed countable range space and let 

{x1,x2,.... } be an enumeration of the 

elements in X. For XL in X, let ri q 

n{raR I XiBtY). Since S is a standard 

range space, Ti is in R for every positive 

integer i. 

To obtain our embedding of S in S2+, IU~ 

wiL1 associate with every xj two normal 

triangles tj and Qi with their corridors 

c, =: corr(tj ) and c^j = corr(ej) such that 

the following holds: 

(1) ej i; int(tJ) and i?~ G int(cj) for 

all positive integers j. 

(2) if’xj B ri , then ti E int(ti) and 

Ci E int(i?j) for all positive 

integers i and j, i 4 j. 

(3) if xj ( ri and xi 4 rj then tj 

li.ss below ci and ti lies below CJ. 

Figs. 2.2 and 2.3 illustrate the situa- 

tions (2) and (3), respectively. 

Figure 2.3. 

Before we demonstrate how we can find 

,.he trlengles tj and tj, we show that they 

Lmply already the required embedding. TO 

this end let yj be the top cornsr of tj 

and let hi be a line through the top 

corner of ‘tj such that hj+ n Zj := 0 and 

such that hj c Ej + Then it follows from 

the conditions (1) through (3) above that 

yj c: hi* if and only if xj E ri. Hence, 

the yj’s and hj+‘s constitute already an 

embeddding of X for all ranges ri in R. In 

order to show that we find positive half- 

planes hr+ for every r ik R such that {j : 

yj ehr+) - (j ! xi sr), consider an abitra’ry 

r in R and let t = n(ti : x, Et-) and c :: 

n(*i : xiar}. It is not too difficult to 

show that there is a line hr F c such that 

t I-I hr+ = 0. Let xi be an element in r 

(and so ri c r) . Then ye lies above ei ; 

since c G Ei, this shows that vi d hr’. If 

xi is not an element in r, then we distin- 

guish two cases: 

Case 1. Xj E ri for all xj in r: Then ti C 

int(‘tj ) for all xj in I- and so yi lies in 

t; consequently, yi 4 hr+. 

Case 2. xj ( ri for a Xj in r: Since Xi C 

f., we have also xi ( rj. Thus, ti l.ics 

below CJ and so it lies ,below hr; conse- 

quently, again yi ( hr+ , 

We conclude, that if we find triangles 

satisfying the conditions (1) through (3) 

then xwe have established an embedding of S 

ip S2*. For this last step in the proof we 

use the correspondence to directed out- 

trees as stated in Lemma 2.4; howovcr, it 

will be necessary to deal with ordered 

out-trees and we need the following de-- 

finition. 

Figure 2.2 

Definition. Let T be an ordered directed 

out-tree, let e = (p,q) be an edge in T, 
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let (p~,ps,...,pk) and (ql,q~,...,q.) be 

the scqucnccs of children of p and q, 

respectively, and let q = Pi. Then the 

tree T-c is obtained from T by contracting 

the edge I?, i.e. we identify q and p and 

:rssj.gn to p the sequence 

(PllPZ,. ..,Pi-l,Ql,Q2,,..,q~,pi+l,...,pk) 

of children. q 

For every non-negative integer j, let 

AJ = {XiCX : i(j} (thus Ao = 0) and let TJ 

be an ordered directed labeled out-tree 

such that (i) for all non-negative 

integers j, the underlying unordered tree 

of T, is isomorphic to the l-inclusion 

graph of (A, , llR(Aj))l and (ii) for all 

positive integers j, Tj-1 is isomorphic to 

Tj--ej , where ej is the edge in Tj that is 

labeled by xj. By Lemma 2.4, (i) can be 

obtained. It is not hard to achieve (ii), 

so we omit here the details. 

Fj.rst let to and Eo be two normal 

triangles with fo C int(to) and corr(t!o) G 

int(corr(t.0)). While constructing now td 

and 22 for j = 1,2 ‘ . . . l we observe the 

following additional condition. Let p be a 

node in Tj, let i be the index of the 

label of its ingoing edge (or i = 0 if p 

is the root of TJ) and let il,is,...,ik be 

the indices of the labels of the edges 

butgoing from p (in this order). Then the 

triangles til,ti2,..a*tik form a “convex 

sequence” inside ei in this order. Note 

that the only additional condition we 

impose here is that also the ordering has 

t.o be observed. (See Fig. 2.4 for an il- 

lustration.) 

Figure 2.4. 

Suppose now we have already defined al 1 

triangles ti for i(j-1. Let (p,q) be the 

edge in Tj with label x3, and let i bc the 

index of the incoming edge of P (or i. = Q 

if p has no incoming edge). We distinguish 

t.wo cases : 

Case I.. q has at least one child in Tj: tj 

has to be chosen inside Pi such that it 

contains all tk , for which xlr is a label 

of an outgoing edge of q in TJ (and the 

same relations must hold for the cor- 

reaponding corridors). Since space is 

limited, we cannot go into further detai.15 

here; we only nent.ion that the essential. 

point i.s that all the triangles that must 

lie inside tj form a (closed) convex suh-- 

sequence inaide Zi due to our order condi- 

tion. 

@a. 2. q has no child in Tj: tj has to be 

chosen inside ti in such a way that the 

order condition is satisfied and. more- 

over, all triangles inside ‘ti lie below 

the corridor CJ of tj and td lies below 

the corridors of all the triangles inside 

Oi. 

Finally, the triangle ej can be ob- 

tained by a small (appropriate) perturba-, 

tion Of tj. 

This eventually concludes the proof of 

Theorem B(Z). 

Concerning the proof of Theorem R(l), 

we mention here only that it is hasod on 

B(2) by the follow.ing transformation: For 

sots A and B, let A A B denote the 

symmetric difference (A-B) U (B-h) of A 

and 8. For a range space S q (X,R) and A c 

X, let S AA = (X,RAA), where R A A = {rAA : 

r6R}. It can be shown that the Vapnik- 

Chervonenkis dimension of S A A equal.6 t.hct 

Vapnik-Cervonenkis dimension of S, and 

that if S A h is embeddable in Sa+ then S 

is ombeddable in Sdtl+. Now it remains to 

observe that if A is a range in S, then ti 

is 3 range in S A A. 

3. Open problems. 

We conclude the’paper with two problems 

which arise in connection with the results 

we presented. 
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(1) Is it possible to extend the 

positive embedding results beyond 

“countable”? 
? 

(2) Is it possible, that -- despite 

of our negative partition result Por 

finite projective planes -- there sre 

partition-trees for finite projective 

planes (or for range spaces of dimen- 

sion 2 in general) where every range 

query visits only a sublinear number 

of nodes (and the number of children 

in the trees is bounded)? Note that 

this does not follow from our result! 
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